If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2-20m=0
a = 5; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·5·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*5}=\frac{0}{10} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*5}=\frac{40}{10} =4 $
| 9x+12=8x-15 | | 2/3+x=10/11 | | 48.8+x=78.98 | | -5(-2x+5)-2x=(x-9)-3 | | x+60+60=70 | | 13/14=y/4 | | 2x+5+6=3x-2 | | -6-e=15 | | 3y+4y+6-7=20 | | -2y-14=-5(y+1) | | r/4r+13=57 | | -11t-2=-24 | | w+(-70=-20 | | -5(x+1)=6x+17 | | 3x+110=X | | 3x-43=11 | | 0.05x=0.069 | | 42/57=x/10+x | | 6(a-3=14-2a | | 0.10x*3.5(0.05x)=4.40 | | 5x-2x+13=250 | | -14=3=x | | m(-4)=32 | | X+(x+1)+(x+2)+(x+3)=134 | | 32x^2-32x+24=0 | | 4u-2+2(3u+5)=-4(u+1) | | 187=93-v | | 7m+11-5m-2m=2m-9 | | -v+97=272 | | (x)(x+15)=150 | | 8+11n-2n=-28 | | 6(x+4)=-2(5x-9)+7x |